

Cost reduction of water electrolysers via insights into anode current collector corrosion

Dr Gareth Hinds FREng NPL Fellow & Science Area Leader Electrochemistry Group









- UK's national standards laboratory
- Founded in 1900
- 1000 scientists/engineers
- Research and consultancy focused on measurement, testing and standards

# Role of measurement





# **Hydrogen – not a hype cycle this time round?**





**Maturity** 



# **NPL Hydrogen Refuelling Station**





### Measurement needs for the hydrogen industry





Material development for fuel cells and electrolysers

Impact assessment of added odorant to hydrogen to aid leak detection

Determination of the **blend ratio** when hydrogen is mixed with natural gas in the gas grid

Measurement of the **combustion properties** of hydrogen

Assessment of the suitability of existing gas infrastructure and materials for hydrogen transportation

Validated techniques for hydrogen storage

https://www.npl.co.uk/resources/energy-transition/hydrogen-industry











































# PEM water electrolyser stack cost breakdown







Today's cost €1,400/kW EU target (2030) €500/kW

Source: E4Tech and Element Energy (2014)

# PEM water electrolyser stack cost breakdown





**Bipolar plates and current** collectors are typically made from platinum-coated titanium, which is expensive to source and manufacture



#### WHY?

Perceived need for corrosion resistance at high potentials (~ 2 V)

Particularly at anode (oxygen) electrode



Source: E4Tech and Element Energy (2014)

# What is the corrosion potential of the current collector?













**Driving force** for corrosion





**Driving force** for corrosion











# **Summary & Implications**



- Corrosion potential at the current collector during PEMWE operation is effectively decoupled from that of the nearest electrode due to the large potential drop in deionised water
- Opens up possibility of using lower cost materials than Pt and Ti for anode current collectors, e.g. carbon or carbon-coated stainless steel, with potential to reduce stack cost by up to ~ 50%

 NPL is now supporting investigation of feasibility of design modifications to PEMWE stacks to incorporate this new perspective