

24.04.2020

CORROSIVE CO₂-STREAM COMPONENTS, CHALLENGING FOR MATERIALS TO BE USED IN CC(U)S APPLICATIONS

Ralph Bäßler,

Oleksandra Yevtushenko, Le Quynh Hoa, Dirk Bettge

www.bam.de

Background

CO₂-Quality in CCUS Technology

corrosion

safety in transport technology

different sources

=

different impurities

costs

potential effect on environment

required strorage volume

Background Process Chain

Background German CCS Research Programs

Directive 2009/31/EC

(38) Access to CO, transport networks and storage sites, irre-

- How to define "...reasonable minimum composition thresholds..."?
- Which reasonable impurity levels may be viable in practical applications?

to be met through CCS. Pipelines for CO₂ transport should, where possible, be designed so as to facilitate access of CO₂ streams meeting reasonable minimum composition thresholds. Member States should also establish dispute settlement mechanisms to enable expeditious settlement of disputes regarding access to transport networks and storage sites.

Background

Chemical Reactions within the CO₂-Stream

Equilibrium and Interactions between NO_x , SO_x , O_2 :

$$2 NO + O2 \rightarrow 2 NO2$$
$$2 NO2 + O2 \rightarrow 2 NO3$$

$$NO_2 + NO \leftrightarrow N_2O_3 \rightarrow HNO_2$$

 $2 NO_2 \leftrightarrow N_2O_4 \rightarrow HNO_2 + HNO_3$
 $NO_2 + NO_3 \leftrightarrow N_2O_3 \rightarrow HNO_3$

⇒ How will reducing impurities modify these interactions?

$$2 SO_2 + O_2 \rightarrow 2 SO_3$$

 $SO_2 + NO_2 \rightarrow SO_3 + NO$
 $SO_2 + H_2O \rightarrow H_2SO_3$
 $SO_3 + H_2O \rightarrow H_2SO_4$

(very slow)
(faster alternative)

Approach

Phase Diagram CO₂

First Pipeline Tests

before after

1000 h, 50 °C, 150 bar, 2 m/s CO₂, 25 ppm H₂O, 25 ppm SO₂, 0.8 % O₂

Despite of very low water content clear corrosion effects

Lab Setup

High pressure

100 bar / 5...40 °C

circulating flow

Materials

	Material Material			
	X3CrNiMo13-4 (S41500)			
	X5CrNiCuNb16-4 (S17400)			
Compression	X12Cr13 (S41000)			
•	Ti-Al6-V4 (R56400)			
	X1NiCrMoCu32-28-7 (N08031)			
	L290NB			
Transport	L360NB			
Transport	L485MB			
	"Soft Iron"			
	X2CrMnNiN22-5-2 (S32101)			
	X1NiCrMoCu32-28-7 (N08031)			
Injection	X5CrNiCuNb16-4 (S17400)			
Injection	X46Cr13 (S42000)			
	42CrMo4 (G41400)			
	X20Cr13 (S42000)			

Results, Normal Pressure

- 600 h / 1.8 % O₂,
- 750 ppm_v CO,
- 1000 ppm_v NO₂,
- 220 ppm_v SO₂
- recommendation given for max. 50 to 100 ppm water

A. S. Ruhl, A. Kranzmann (2012)

Results - Water Content Effect, 2 Days, 5 °C, Carbon Steel

Results - "Worst Case Mixture", 186 Days

Results – "Worst Case Mixture", 186 Days

Carbon Steel:

- uniform corrosion
- 0.0025 mm/a

Cr-Steel:

- localized corrosion
- shallow pit depth < 10 μm

Results - Cr-Steel, Details

Ambient Pressure, 5 °C, Acid Condensation

 NO_2 $SO_2 + NO_2$ H₂S $SO_2 + NO_2 + H_2S$ SO2 -stee 8000 ppm **Sulfates Sulfates/Sulfide Sulfates Oxides Sulfates** corrosion rate [mm/y] 20µm NO, H,S 50 µm gas species

Results on C-Steel at High Pressure

High Pressure - 10 MPa

Oxi (70 ppm SO_2 ; 100 ppm NO_2 ; 6700 ppm O_2)

Red (50 ppm H_2S , 10 000 ppm H_2)

Mixed

- considerable corrosion only at 5 °C (Oxi; Oxi+Red)
- powdery, easily removable 2-layer system: **Fe-Hydroxide** (2-3 μ m) + outgrowth (\leq 10 μ m)
- uniform/shallow pitting => linearly extrapolated $v_{CR} \le 0.07 \text{ mm/a}$

Safe concentrations for carbon steel

Low Pressure - 0.1 MPa

- Oxi \approx Mixed \rightarrow uniform/shallow pitting ... $v_{CR} = 0.4 0.5$ mm/a ...Fe-Hydro-Sulfates
- → pitting corrosion ... $\mathbf{v}_{CR} \leq 0.01 \text{ mm/a}$...Fe-Sulfides Red

C-steel

Results - Droplet, C-Steel

- 220 ppm_v SO₂,
- 6700 ppm_v O₂

5 μL H₂O as droplet

Results in Supercritical and Gaseous CO₂

In supercritical impure CO₂ (worst case scenario), from 7 up to 186 exposure days:

- Corrosion rate decreases by longer exposure times
- Carbon steels tend to general corrosion with low corrosion rates (< 0.1 mm/a)
- High alloyed steels tend to localized corrosion
- Corrosion rate increases by increasing water content, however 1000 ppm_v seems to be a limit
- Droplet formation due to condensation can cause localized acidic attack

More Results in Supercritical and Gaseous CO₂

- **●1 bar & 5 °C** (168 h, 8000 ppm_v H₂O, Oxi/Red/Mix)
 - no/minimal corrosion on high alloyed steels but clearly on pipeline steel
 - amorphous/weak crystallinity of corrosion layers
 - thin corrosion layer and initial pit formation already at 50 ppm_v H₂O and 48 h (Oxy)
 - \circ SO₂, H₂S, SO₂+NO₂, SO₂+NO₂+H₂S \rightarrow sulfates or NO₂ \rightarrow oxides
 - **②** Corrosion type: H_2S → pitting, NO_2 → intergran., rest → shallow/uniform
- 100 bar & 40 °C (300 h, 50 ppm_v H₂O, Oxi/Red/Mix)
 - no acid condensation observable
 - minimal corrosion (3 sections) → thin film and cavities visible
- Acid Condensation
 - NO₂ promotes the formation of H₂SO₄

Set Up - Injection Conditions

Reference electrode

CO₂ out

Heater

_Temperature controller

CO₂ in

Counter electrode

·WE=Test specimen

Brine composition										
Cations	mg L-1	Anions	mg L ⁻¹							
Ca ²⁺	1760	CI-	143300							
K +	430	SO ₄ ²⁻	3600							
Mg^{2+}	1270	HCO ₃ -	40							
Na+	90100									

 $T = 60 \, ^{\circ}C$ $CO_2 \text{ flow } 3 - 5 \text{ L/h}$ pH = 5.8 - 6.0

Results - Electrochemistry; Cyclovoltametrie, 60 °C

Results – Electrochemistry

- in CO₂-saturated, artificial saline water
 - C- and Cr-Steels are not pitting corrosion resistant
 - high alloyed materials are pitting corrosion resistant
- chloride concentration determines corrosion kinetics

Survey

	Material	CO ₂ -stream, normal pressure, "worst case", 170 °C, 5 °C, 60 °C, max. 4 weeks	CO_2 -stream, normal pressure, "condensated" at 5 °C, \geq 1000 ppm H_2O , max. 4 weeks	brine, CO ₂ -saturated, normal pressure, 60 °C, 2 weeks	condensate H ₂ SO ₄ +HNO ₃ +CO ₂ , normal pressure, 5 °C, 2 weeks	CO ₂ supercritical, worst case, 60 °C, 10 MPa, 1000 ppm H ₂ O 7 days	CO ₂ -stream supercritical, laminar, "worst case", 60 °C, 10 MPa, 6 month	CO ₂ -stream supercritical, turbulent, "worst case", 60 °C, 10 MPa, 5 days	Final Evaluation
uo	X3CrNiMo13-4	+	-, P			+			+*
compression	X5CrNiCuNb16-4	+	-, P	-, P		-, P			-
pre	X12Cr13	+	-, P	-, P					-
e e	Ti-Al6-V4	+	+						+
၁	X1NiCrMoCu32-28-7	+	+	+					+
Ħ	L290NB	+	-, U, 1.02 mm/a			U, 16 μm/a			+ *
transport	L360NB	+	-, U 1.31 mm/a		-, L, 1.5 mm/a	U, 25 μm/a	U, 6 μm/a		+ *
Lan	L485MB	+	-, U 1.29 mm/a			U, 36 μm/a		+*	+ *
‡	Soft Iron	+	-, U 0.98 mm/a			U, 8 μm/a			+*
	X2CrMnNiN22-5-2	+	+ *	+ **		+***			+**,'+***
Ħ	X1NiCrMoCu32-28-7	+	+	+	-, L , 0.6 mm/a	+			+*
injection	X5CrNiCuNb16-4	+	-, P	-, P					-
nje	X46Cr13	+	-, L, 0.70 mm/a	-, P	-, U, 1.6 mm/a	+***	+***, L, 20 μm/a	+	-
•=	42CrMo4	+	-, U 1.14 mm/a	-, U, 2 mm/a		U, 24 μm/a		+	-
	X20Cr13	+	-, L, 0.52 mm/a	-, P		+***		+	
	+ - resistant max. 0,1 mm/a not resistant L - localized (shallow pitting) corrosion P - pitting corrosion			+ *: resistant, as long as no acid induced corrosion occurs + **: susceptible to crevice corrosion +***: suscetible to shallow pitting, depth less than 0,1 mm/a					
	U - uniform corrosion								

General Summary

- CO₂ quality specifications are <u>not</u> only a matter of CO₂ purity (i.e. CO₂ content).
- The "rest" also matters, in particular contents of reactive impurities affecting material corrosion (and rock alteration).
- Also chemical reactions in CO₂ stream needs to be considered, in particular when combining CO₂ streams of different compositions.

Summary – Pipeline Steels

- Within "worst case" mixture (600 ppm_v H₂O and 100 ppm_v each NO₂ and SO₂) no significant corrosion occurred at ambient pressure
- At more than 600 ppm_v H₂O and "worst case" mixture
 → no corrosion of pipeline steels at temperatures ≥ 60 °C
- At 30 °C corrosion on pipeline steels only at water contents ≥ 8000 ppm_v.
- Due to acid condensation at 5 °C, corrosion when water content ≥ 2000 ppm_y.
- At all temperatures slight corrosion, when $SO_2 \ge 600 \text{ ppm}_v$ and water content $\ge 2000 \text{ ppm}_v$.

Summary (Autoclave Experiments)

Pressure only

- Mobility of potential acids is very different.
- HNO₃ selective and quickly corrosive
- H₂SO₄ immobile and hygroscopic

Pressure and load (bending frame)

- no SCC on pipeline steel detected
- corrosive conditions result in intergranular corrosion

Pressure, load and turbulent flow (bending frame, circulation)

- significant effects within the zone of turbulent impact
- condensation effects at joints within the circuit

Consequences for CCUS Applications

- Commercially available carbon steels are suitable for compression and pipelines as long as moisture content and impurities are limited. (water 50 to 100 ppm_v, SO₂ and NO₂ ca. 100 ppm_v)
- Corrosion rates increase with increasing water content.
 (0.2 20 mm/a)
- Condensation of acids and therefore droplet formation is always possible, even at low water contents.
- A low SO₂ content within the CO₂-stream might be more important than a low water content.

Consequences for CCUS Applications (cont.)

- Cr13-steels showed a general susceptibility to shallow pitting and pitting. So, they seem to be not suitable for CCUS applications.
- Low alloyed steels showed better corrosion behavior. (predictable uniform corrosion)
- For direct contact with saline aquifer fluids only high alloyed steels shall be used.

Knowledge Gaps

- Reaction kinetics of highly diluted gases in CO₂
 (i.e.: oxidation of SO₂ to H₂SO₄, effect of particles)
- Condensation kinetics of highly dissolved impurities in CO₂ on pipeline steel
- Effective removal of highly dissolved impurities from CO₂
- Influence of impurities on parameters of equation of state (compare to Gernert, J. and R. Span 2016)
- Behavior of HAZ and welding material on welded CO₂-pipelines
- Behavior of sealings and sealing materials at changing CO₂pressure
- Implementation of a demo pipeline within EU and Norway

Acknowledgement

Some of the investigations have been financed by German Federal Ministry for Economic Affairs and Energy on the basis of a decision by the German Bundestag

and third-party funding by ALSTOM, ——EnBW,

Authors thank for this support!

